

Find
$$\frac{\sinh}{h} = 1$$

$$\frac{\sinh}{h + 0} = \lim_{h \to 0} \frac{\sinh}{h(h+2)}$$

$$= \lim_{h \to 0} \frac{\sinh}{h} \cdot \frac{1}{h+2}$$

$$= \lim_{h \to 0} \frac{\sinh}{h} \cdot \lim_{h \to 0} \frac{1}{h+2}$$

$$= 1 \cdot \frac{1}{0+2} = 1 \cdot \frac{1}{2} \cdot \frac{1}{2}$$

Evaluate
$$\lim_{\chi \to 2} \frac{\sin(\chi - 2)}{\chi^2 - 3\chi + 2} = \lim_{\chi \to 2} \frac{\sin(\chi - 2)}{(\chi - 2)(\chi - 1)}$$

Recall
$$\lim_{\chi \to 0} \frac{\sinh}{h} = 1$$

$$\lim_{\chi \to 2} \frac{\sinh}{\chi - 2} \cdot \frac{1}{\chi - 1}$$

$$\lim_{\chi \to 2} \frac{\sinh}{\chi - 2} \cdot \lim_{\chi \to 2} \frac{1}{\chi - 1}$$

$$\lim_{\chi \to 2} \frac{\sinhh}{h} \cdot \lim_{\chi \to 2} \frac{1}{\chi - 1}$$

$$\lim_{\chi \to 2} \frac{\sinhh}{h} \cdot \lim_{\chi \to 2} \frac{1}{\chi - 1}$$

$$\lim_{\chi \to 2} \frac{1}{\chi - 1} = 1 \cdot 1 = 1$$

Evaluate
$$\lim_{x\to 0} \frac{\sin 3x}{\sin 5x}$$

Recall

$$\lim_{x\to 0} \frac{\sin 3x}{5 \sin 5x}$$

$$\lim_{x\to 0} \frac{\sin 3x}{5 \cos 5x}$$

Show
$$\lim_{h \to 0} \frac{1 - \cos h}{h} = 0$$
 $\lim_{h \to 0} \frac{1 - \cos h}{h}$ $\lim_{h \to 0} \frac{1 - \cos h}{h} = \lim_{h \to 0} \frac{1 - \cosh}{h}$ $\lim_{h \to 0} \frac{1 + \cosh}{h}$ $\lim_{h \to 0} \frac{\sinh}{h} = 1$ $\lim_{h \to 0} \frac{\sinh}{h} \cdot \lim_{h \to 0} \frac{\sinh}{h} \cdot \lim_{h \to 0} \frac{\sinh}{h} \cdot \lim_{h \to 0} \frac{\sinh}{h}$ $\lim_{h \to 0} \frac{\sinh}{h} \cdot \lim_{h \to 0} \frac{\sinh}{h}$ $\lim_{h \to 0} \frac{\sinh}{h} = 1$ $\lim_{h \to 0} \frac{1 + \cos h}{h} = 1$ $\lim_{h \to 0} \frac{1 - \cosh}{h} = 0$ $\lim_{h \to 0} \frac{1 - \cosh}{h} = 0$ $\lim_{h \to 0} \frac{1 - \cosh}{h} = 0$ $\lim_{h \to 0} \frac{1 - \cosh}{h} = 0$

Evaluate
$$\lim_{\chi \to 0} \frac{\tan 7\chi}{\sin 3\chi}$$

 $\frac{\sin 7\chi}{\cos 7\chi} = \lim_{\chi \to 0} \frac{\sin 7\chi}{\cos 7\chi} = \lim_{\chi \to 0} \frac{1}{\cos 7\chi} = \lim_{\chi \to 0} = \lim_{\chi \to 0} \frac{1}{\cos 7\chi} = \lim_{\chi \to 0} \frac{1}{\cos 7\chi} = \lim_{\chi \to 0}$

Evaluate
$$\lim_{\chi \to 0} \frac{\chi^2}{1 - \cos \chi} = \frac{0}{1 - \cos 0} = \frac{0}{1 - 1} = 0$$

I.F.

$$\lim_{\chi \to 0} \frac{\chi^2}{1 - \cos \chi} = \lim_{\chi \to 0} \left[\frac{\chi^2}{1 - \cos \chi} \cdot \frac{1 + \cos \chi}{1 + \cos \chi} \right]$$

$$= \lim_{\chi \to 0} \left[\frac{\chi^2}{\sin^2 \chi} \cdot (1 + \cos \chi) \right]$$

$$= \lim_{\chi \to 0} \frac{\chi^2}{\sin^2 \chi} \cdot \lim_{\chi \to 0} (1 + \cos \chi)$$

$$= \lim_{\chi \to 0} \frac{\chi^2}{\sin^2 \chi} \cdot (1 + \cos \chi)$$

$$= \lim_{\chi \to 0} \frac{\chi^2}{\sin^2 \chi} \cdot (1 + \cos \chi)$$

$$= \lim_{\chi \to 0} \frac{\chi^2}{\sin^2 \chi} \cdot (1 + \cos \chi)$$

$$= \lim_{\chi \to 0} \frac{\chi^2}{\sin^2 \chi} \cdot (1 + \cos \chi)$$

$$= \lim_{\chi \to 0} \frac{\chi^2}{\sin^2 \chi} \cdot (1 + \cos \chi)$$

Evaluate
$$\lim_{\chi \to 0} \frac{1 - \cos 5\chi}{1 - \cos 5\chi}$$
: $\frac{1 - \cos 5\chi}{1 - \cos 5\chi}$: $\frac{1 + \cos 5\chi}{1 + \cos 5\chi}$:

Sind a monzero value for constant
$$K$$

Such that

$$S(x) = \begin{cases}
\frac{ton Kx'}{x} & iS \neq x \geq 0 \\
3x + 2K^2 & iS \neq x \geq 0
\end{cases}$$
is continuous at $X = 0$. I) Sind $S(0)$

$$\lim_{x \to 0} S(x) = S(0) \qquad S(0) = 3(0) + 2K^2 \qquad S(0) = 2K^2$$

$$\lim_{x \to 0} S(x) \neq \lim_{x \to 0} S(x) = \lim_{x \to 0} S(x)$$

$$\lim_{x \to 0} S(x) = \lim_{x \to 0} \frac{ton Kx}{x} = \lim_{x \to 0} \frac{Sin kx}{Cos kx} \cdot \frac{1}{x}$$

$$\lim_{x \to 0} S(x) = \lim_{x \to 0} \frac{ton Kx}{x} = \lim_{x \to 0} \frac{Sin kx}{Cos kx} \cdot \frac{1}{x}$$

$$\lim_{x \to 0} S(x) = \lim_{x \to 0} \frac{Sin kx}{x} \cdot \frac{1}{(cos kx)}$$

$$\lim_{x \to 0} S(x) = \lim_{x \to 0} \frac{Sin kx}{x} \cdot \frac{1}{(cos kx)}$$

$$\lim_{x \to 0} S(x) = \lim_{x \to 0} \frac{Sin kx}{x} \cdot \frac{1}{(cos kx)}$$

$$\lim_{x \to 0} Sin kx \cdot \frac{1}{(cos kx)}$$

$$\lim_{x \to 0} Sin$$

For
$$\varepsilon=.1$$
 Sind a 8>0 such that $\lim_{x \to 2} \frac{x}{2} = 1$

$$\lim_{x \to 2} \frac{x}{2} = 1$$

$$\lim_{x \to 2} \frac{x}{2} = 1$$

$$\lim_{x \to 2} \frac{x}{2} = 1$$

$$\lim_{x \to 2} \frac{x}{2} = 2$$

$$\lim_{x \to 2} \frac{x}{2} = 1$$

$$\lim_{x \to 2} = 1$$

$$\lim_{x \to 2} \frac{x}{2} = 1$$

$$\lim_{x \to 2} \frac{x}{2} = 1$$

$$\lim_{x \to 2} = 1$$

$$\lim_{x \to 2} \frac{x}{2} = 1$$

$$\lim_{x \to 2} \frac{x}{2} = 1$$

$$\lim_{x \to 2} = 1$$

$$\lim_{x$$

For
$$\varepsilon=.05$$
, Sind a \$>0 such that

$$\lim_{x \to 2} \frac{x^2 - 4}{x - 2} = 4.$$

$$\lim_{x \to 2} \frac{x^2 - 4}{x - 2} = \lim_{x \to 2} \frac{(x + 2)(x - 2)}{x - 2}$$

Verify the limit $\lim_{x \to 2} \frac{x^2 - 4}{x - 2} = \lim_{x \to 2} \frac{(x + 2)(x - 2)}{x - 2}$

For $\varepsilon>0$, there is a $\varepsilon>0$ = $\lim_{x \to 2} (x + 2) = 4$

Such that
$$|s(x) - L| \le \text{ whenever } |x - a| \le |x - 2| \le$$

Sor
$$\varepsilon=.05$$
, Sind a \$>0 Such that $\lim_{x\to 5} \frac{1}{x} = \frac{1}{5}$

$$\lim_{x\to 5} \frac{1}{x} = \frac{1}{5} \checkmark |S(x) - L| < \varepsilon \text{ whenever } |x-a| < \delta$$

$$S(x) = \frac{1}{2} \qquad |\frac{1}{2} - \frac{1}{5}| < \varepsilon \qquad |x-5| < \delta$$

$$|S(x)| = \frac{1}{2} \qquad |\frac{5-x}{5x}| < \varepsilon \qquad |x-5| < \delta$$

$$|S-x| = |x-5| < \varepsilon \qquad |x-5| < \delta$$

$$|S-x| = |x-5| < \varepsilon \qquad |x-5| < \delta$$

$$|S-x| = |x-5| < \varepsilon \qquad |x-5| < \delta$$

$$|S-x| = |x-5| < \varepsilon \qquad |x-5| < \delta$$

$$|S-x| = |x-5| < \varepsilon \qquad |x-5| < \delta$$

$$|S-x| = |x-5| < \varepsilon \qquad |x-5| < \delta$$
Sor polynomial Sunctions \rightarrow we want $\delta < 1$
Sor rational Sunctions \rightarrow we need to be mindful of the domain.

$$|x-5|<10^{-1} < x-5<1$$

$$-1< x-5<1$$

$$+< x<6$$

$$-6< x<6$$

$$|x|<6$$

$$|x|<6$$

$$5|x|<30$$

$$5|x|<30$$

$$|x-5|<30 \in S$$
Sor $\varepsilon=.05$, $S=30(.05)=1.5$

$$Pick S=min \{1,30 \in S\}$$

$$S=min \{1,1.5\}$$

$$Pick S=1$$

Prove
$$\lim_{x \to \frac{1}{2}} \frac{1}{x} = 2$$
 $S(x) = \frac{1}{2}$

Sor any $8 > 0$, there is a $8 > 0$
 $L = 2$

Such that

 $a = \frac{1}{2}$
 $|S(x) - L| < \varepsilon$ whenever $|x - a| < \delta$
 $|x - \frac{1}{2}| < \delta$
 $|\frac{1}{2} - 2| < \varepsilon$
 $|\frac{1 - 2x}{2}| < \varepsilon$
 $|\frac{-2x+1}{2}| < \varepsilon$
 $|\frac{-2(x-\frac{1}{2})}{2}| < \varepsilon$
 $|\frac{2}{2}| (x-\frac{1}{2})| < \varepsilon$
 $|\frac{2}{2}| (x-\frac{1}{2})| < \varepsilon$

Reep

Bound



Prove
$$\lim_{x\to 6} \sqrt{x+3} = 3$$
 $x\to 6$

S(x)= $\sqrt{x+3}$ Sor $\varepsilon > 0$, there is a S>0 such that $0=6$
 $|S(x)-L|<\varepsilon$ whenever $|x-a|<\delta$
 $|S(x)-L|<\varepsilon$ whenever $|x-a|<\delta$
 $|S(x)-L|<\varepsilon$ whenever $|x-a|<\delta$

Using Conjugates

 $|S(x)-L|<\varepsilon$ is a S>0 such that $|x-a|<\delta$
 $|S(x)-L|<\varepsilon$ whenever $|S(x)-L|<\delta$
 $|S(x)-L|<\delta$

